US009448971B2

a2 United States Patent (10) Patent No.: US 9,448,971 B2
Petri 45) Date of Patent: Sep. 20, 2016

(54) CONTENT MANAGEMENT SYSTEM THAT 8,046,698 B1* 10/2011 Chalfin et al. 715/751
2004/0054659 A1* 3/2004 MCINYTE .ooororovveerrevorrrers 70773

RENDERS MULTIPLE TYPES OF DATA TO 2007/0276856 Al* 11/2007 Giannetti . .. 707/102
DIFFERENT APPLICATIONS 2007/0296993 Al* 12/2007 Bai ..., . 358/1.13
2008/0155422 AL* 6/2008 Manico et al. 715/731

(75) Inventor: John Edward Petri, Lewiston, MN OTHER PUBLICATIONS

(US)
. http://www.ptc.com/appserver/mkt/products/home.jsp?k=3591, pp.
(73) Assignee: Internati(.)nal Business Machines 1-2, printed Oct. 19, 2007.
Corporation, Armonk, NY (US) http://www.invisionresearch.com/products/xpress, pp. 1-4, printed

Oct. 19, 2007.
(*) Notice: Subject to any disclaimer, the term of this http://www.invisionresearch.com/products/spl/fda.htm, pp. 1-3,
patent is extended or adjusted under 35 printed Oct. 19, 2007.

U.S.C. 154(b) by 2102 days. hitp://www.w3.org/MarkUp/Forms, pp. 1-5, printed Oct. 19, 2007.
http://www-306.ibm.com/software/lotus/forms, p. 1, printed Oct.

21) Appl. No.: 11/875,204 19, 2007.
@b ppL 7o ’ http://xml.coverpages.org/healthcare html, pp. 1-70, printed Oct.

(22) Filed: Oct. 19, 2007 19, 2007.

* cited by examiner

(65) Prior Publication Data
US 2009/0106303 Al Apr. 23, 2009 Primary Examiner — Manglesh M Patel
Assistant Examiner — Nicholas Hasty
(51) Int. ClL (74) Attorney, Agent, or Firm — Martin & Associates, LL.C;
GOG6F 17721 (2006.01) (57) ABSTRACT
GOGF 17/22 (2006.01) A content management system (CMS) includes a rendering
GO6F 17/24 (2006.01) . .) - .
mechanism that receives a desired rendering action for a
GO6F 17/25 (2006.01) L . :
selected object in the repository, determines from defined
GO6F 17/26 (2006.01) . - : .
rendering rules which elements in the selected object cor-
GO6F 1727 (2006.01)
respond to the desired rendering action, determines which of
GO6F 17/28 (2006.01) . . .
(52) US.Cl a plurality of applications corresponds to the desired ren-
CPC oo GO6F 17/21 (2013.01y 4cring action, and renders one or more elements in the
. A : selected object that correspond to the desired rendering
(58) Field of Classification Search action in the application corresponding to the desired ren-
USPC 715/243, 204; 707/999.103, E17.001

dering action. The rendering mechanism may insert render-
ing markers in an object that define a type of data for each
element in the object. In addition, nested elements may be

See application file for complete search history.

(56) References Cited rendered by invoking multiple applications that are active at
U.S. PATENT DOCUMENTS the same time to simultaneously render different types of
data.
7,103,850 B1* 9/2006 Engstrom et al. 715/778

7,655,095 B2* 2/2010 Farrar

10 Claims, 15 Drawing Sheets

800

810

Define rendering rules

Object is checked out of the repository
(iie. to view or edit)

The object is scanned and each slement is| 80
evaluated ageinst rendering rules

840
endering rule
" YES [hserirendering markers| 850
NO around corresponding
860 element
YES
ore elements leftto scan

NO

Reconstitute the object

Render object
(1o view or edit)

870

880

U.S. Patent Sep. 20, 2016 Sheet 1 of 15 US 9,448,971 B2

100
110A 1
Client —
112A
114A 1/40
P
} 20A Server
Memory 1122A 142
Application N T724A CPU 144
CMS Plugin = 1 S 7
Client 126A torage || 150
Rendering H-+1— Content Repository 152
Mechanism | Content T
160
Memory =
3 Content Management _//1 70
: System
110N Rendering __—/l72
Client |~ Mechanism
112N Rendering Rule 174
CPU Generation -1
114N Mechanism l80
120N Rules /’J 82
Memory —fZZN | Bursting Rules }——-"’ 184
Document Editor [T T724N | Linking Rules H~TT
: |-
CMS Plugin_ 11 Synchronization ___,/J 86
Client 126N Rules il
Rendering H-T1 188
Mechanism Rendering | | | L+
Rules
I 190
DASD [

T 195

FIG. 1 @/

U.S. Patent Sep. 20, 2016 Sheet 2 of 15 US 9,448,971 B2

200 '
N 210
Structured Data "
220
Unstructured Data i 250
Structured Data
> L
230 Application
Assembled Data —
240
Wizard Data —
FIG. 2 Prior Art
200
] 210
Structured Data i
220
Unstructured Data i 350
> Unstruct_ureq Data | _~
230 Application
Assembled Data i
240
Wizard Data "
FIG. 3 Prior Art
200
N 210
Structured Data -
220
Unstructured Data " 450
Assembled Data
230 Application
Assembled Data i
Wizard Dat i i
izard Data FIG. 4 Prior Art

U.S. Patent Sep. 20, 2016

Sheet 3 of 15

US 9,448,971 B2

200
~~ 210
Structured Data L
220
Unstructured Data I
. 550
Wizard |
230 Application
Assembled Data L
240
Wizard Data I
FIG. 5 Prior Art
20
210 2%0
Structured Data H Structured Data
Application
350
220 610
Unstructured Data H - Unstructured Data
Rendering Application
230 Mechanism
Assembled Data 1 Assembled Data
Application
450
Wizard Data H Wizard
550 | Application

FIG. 6

U.S. Patent Sep. 20, 2016 Sheet 4 of 15 US 9,448,971 B2

700

Rendering Action Type of Data Editor
StructuredEditAction Structured | StructuredEditor —— 710
UnstructuredEditAction | Unstructured | UnstructuredEditor —— 720
AssembledEditAction Assembly AssemblyEditor —— 730
WizardEditAction Wizard WizardEditor 740

FIG. 7

U.S. Patent Sep. 20, 2016 Sheet 5 of 15

Define rendering rules

l

Object is checked out of the repository
(i.e. to view or edit)

'

\e

800

i

820

The object is scanned and each element is
evaluated against rendering rules

830

840

Does the element match a

Y

YES

860

Insert rendering markers
around corresponding
element

YES

More elements left to scan?

870
Reconstitute the object
Render object /880
(to view or edit)

FIG. 8

US 9,448,971 B2

850
7

U.S. Patent Sep. 20, 2016 Sheet 6 of 15 US 9,448,971 B2

900
Select an action against an object 910 ‘Z
that has been processed to determine how
to render elements in the object
920
Are there NO
more elements left to
evaluate? l 960
/

Identify application corresponding to

selected action
Select an element l

970

Render only elements marked as
being associated with the selected
action to the identified application

Is the
element associated with the
action?

NO

950

7

Mark the element as being
associated with the selected action

FIG. 9

U.S. Patent

Sep. 20, 2016 Sheet 7 of 15 US 9,448,971 B2
1000
/
1010

Check an object out of the repository
(i.e. to view or edit)

|

The object is scanned and rendering | 1020
markers are inserted according to
rendering rules

'

The object is reconstituted and sent to
the client (to view or edit)

1030

1040

NO

Are there any nested

elements?

Send each nested element to the CMS | 1050
to determine which application to use to |
render each nested element

The CMS identifies application for ﬁm

each nested element

l 1070

Client renders each nested element |~
using each identified application

FIG. 10

U.S. Patent

Sep. 20, 2016 Sheet 8 of 15 US 9,448,971 B2

1100

/

Check an object out of the repository | _~
(i.e. to view or edit)

|

The object is scanned and rendering | 1120
markers are inserted according to -
rendering rules

'

The object is reconstituted and sentto | _~
the client (to view or edit)

1140

NO

Are there any nested

elements?

The client rendering mechanism 1150
identifies which application to use to -
render each nested element

. y 1160
Client renders each nested element e

using each identified application

FIG. 11

U.S. Patent Sep. 20, 2016 Sheet 9 of 15 US 9,448,971 B2

<documcnt>

<id root="923849-239847-298749" />

<code code="23948-4" codeSystem="3.41.2983.1.298988.6.2"codeSystemName="LOINC"
displayName="Human prescription drug label" />

<title>
GREAT DRUG 1210

(TECHNICAL NAME OF GREAT DRUG)

TABLETS AND CHEWABLE TABLETS

EXAMPLE DOCUMENT- NOT FOR MEDICAL REFERENCE

</title>
<effective Time value="20021201" />
<component>
<section>
<id root="1923849-239847-298749-321" /> — 1220
<subject>

<manufacturedProduct>
<manufacturedMedicine>
<namc>Great Drug</namc>
<formCode code="504" displayName="TABLET, FILM COATED" />

<activelngredient>
<quantity>
<numcrator unit="mg" valuc="10" />
<denominator value="1" />
</quantity>

<activelngredientSubstance>
<code code="TBD" codeSystem="1.2.3.4" codeSystemName="FDA" />
<name>technical name</name>
<activeMoiety>
<activeMoiety>
<code code="TBD" codeSystem="1.2.3.4" codeSystemName="FDA" />
<namc>somcthing</namc>
</activeMoicty>
</activeMoiety>
</activelngredientSubstance>
</activelngredient>
</manufacturedMedicine>
</manufacturedProduct>
</subject>
</section>
</component>

1230

FIG. 12

U.S. Patent Sep. 20, 2016 Sheet 10 of 15 US 9,448,971 B2

<component>
<section>
<id root="12774a7f-fded-11d8-ae89-234223">
</id>
<code code="34492-3" codeSystem="2.16.840.1.134221.6.1" codeSystemName= 1310
"LOINC" displayName="DESCRIPTION SECTION">
</code>
<title>DESCRIPTION</title>
<text>
<paragraph>
GREAT DRUG was designed to relieve the common cold.
^{®} [*] </paragraph>
<paragraph>
Great Drug is described chemically as [chemical description goes here. |
</paragraph>
<paragraph>
The empirical formula is: formula goes here
</paragraph>
<paragraph>
Each 10-mg film-coated GREAT DRUG tablet contains 10.4 mg of insert
ingredient here.
</paragraph>
<paragraph>
Each 4-mg and 5-mg chewable GREAT DRUG tablet contains 4.2 and 5.2 mg
inscrt ingredient here, respectively. Chewablce tablets contain the following inactive
ingredients: name ingredients.
</paragraph>
</text>
<component>
<observationMedia ID="MM1">
<value>
<reference value="great-drug-01.jpg" />
</value>
</observationMedia>
</component>
<component> 1320
<observationMedia ID="MM2">
<value>
<reference value="great-drug-02.jpg" />
<fvaluc>
</observationMedia>
</componcnt>
</section>
</component™>
</document>

FIG. 13

U.S. Patent Sep. 20, 2016 Sheet 11 of 15 US 9,448,971 B2

1400

<RenderingRules>
<RuleGroup>
<Condition operator="IN" systemRoleRef="regulatory contributor">
<Value constant="CURRENT USER_GROUPS"
</Condition>
<Rule match="/document/component/section[child::text]" type="unstructured">
1410 1420 <Action name="UnstructuredEditAction" />
</Rule>
<Rule match="/document/component/section|child::text]/id"type="structured" />
1430¢ <Rule match="/document/component/section[child::text]/code"type="structured"/>
<Rule match="/document/component/section[child::text]/title"type="structured” />
</RuleGroup>
<Default type="structured>
<Condition typc="contcnt" opcrator="EQ">
<Value constant="SKELETON" />

</Condition> 1440
<Action name="StructuredEditAction" />
</Dcfault>
</RenderingRules>
1500
<DataMapping>

<Data type="structured">
<Action name="StructuredEditAction" />
/Data>
<Data type="unstructured">
<Action name="UnstructuredEditAction" />

/Data>
<Data type="assembled">
<Action name="AssembledEditAction" />
</Data>
</DataMapping>

FIG. 15

U.S. Patent Sep. 20, 2016 Sheet 12 of 15 US 9,448,971 B2

<?score defaultRenderActions="StructuredEditAction”?> <« 1610
<document>

<id root="1923849-239847-2908749" />

<code code="23948-4" codeSystem="3.41.2983.1.298988.6.2"codeSystemName="LOINC"
displayName="Human prescription drug label" />

<title>
GREAT DRUG

(TECHNICAL NAME OF GREAT DRUG)

TABLETS AND CHEWABLE TABLETS

EXAMPLE DOCUMENT- NOT FOR MEDICAL REFERENCE

</title>
<effective Time value="20021201" />
<component>
<scction>
<id root="1923849-239847-298749-321" />
<subject>

<manufacturedProduct>
<manufacturedMedicine>
<name>Great Drug</name>
<formCode code="504" displayName="TABLET, FILM COATED" />
<activelngredient>
<quantity>
<numerator unit="mg" value="10" />
<dcnominator valuc="1" />
</quantity>
<activelngredientSubstance>
<code code="TBD" codeSystem="1.2.3.4" codeSystemName="FDA" />
<name>technical name</name>
<activeMoiety>
<activeMoiety>
<code code="TBD" codeSystem="1.2.3.4" codeSystemName="FDA" />
<name>something</name>
</activeMoiety>
</activcMoicty>
</activelngredientSubstance>
</activelngredient>
</manufacturcdMcdicinc>
</manufacturedProduct>
</subject>
</section>
</component>

FIG. 16

U.S. Patent Sep. 20, 2016 Sheet 13 of 15 US 9,448,971 B2

<component>
<section>
<?score renderActions="UnstructuredEditAction”?> +— 1710
<id root="12774a7f-fded-11d8-ac89-234223">
<?score renderActions="Structured EditAction”?> </id> <+—— 1720

<code code="34492-3" codeSystem="2.16.840.1.134221.6.1" codeSystemName="LOINC"
displayName="DESCRIPTION SECTION">

<?score renderActions="Structured EditA ction”?> </code> <«+— 1730
<title><?score renderActions="Structured EditAction”?>DESCRIPTION</title> «—1740
<text>

<paragraph>

GREAT DRUG was designed to relieve the common cold.
^{®} [*] </paragraph>
<paragraph>
Great Drug is described chemically as [chemical description goes here.]
</paragraph>
<paragraph>
The empirical formula is: formula goes here
</paragraph>
<paragraph>
Each 10-mg film-coated GREAT DRUG tablet contains 10.4 mg of insert
ingredient here.
</paragraph>
<paragraph>
Each 4-mg and 5-mg chewable GREAT DRUG tablet contains 4.2 and 5.2 mg
insert ingredient here, respectively. Chewable tablets contain the following inactive
ingredients: name ingredients.
</paragraph>
</text>
<component>
<observationMedia ID="MM1">
<value>
<reference value="great-drug-01 jpg" />
</value>
</observationMedia>
</component™>
<component>
<observationMedia ID="MM2">
<value>
<reference value="great-drug-02 jpg" />
</value>
</observationMedia>
</component™>
</section>
/component>
</document>

FIG. 17

U.S. Patent Sep. 20, 2016 Sheet 14 of 15

US 9,448,971 B2

(File ~

Properties with structured data editor

FIG. 18

A schema is changed or 1910
added to the repository

Analyze Changed or Added _920
Schema Elements
Automatically generate new _930
rendering rule

NO

1900

Notify Administrator?

1950
Send notification to administrator —

FIG. 19

U.S. Patent Sep. 20, 2016 Sheet 15 of 15 US 9,448,971 B2

2000

Structured Data Display

2010

Unstructured Data Display

2020
Structured Data Display 2030
Assembly Data Display

2040
Structured Data Display

2050

FIG. 20

US 9,448,971 B2

1
CONTENT MANAGEMENT SYSTEM THAT
RENDERS MULTIPLE TYPES OF DATA TO
DIFFERENT APPLICATIONS

BACKGROUND

1. Technical Field

This disclosure generally relates to content management
systems, and more specifically relates to rendering of con-
tent in a content management system.

2. Background Art

A content management system (CMS) allows many users
to efficiently share electronic content such as text, audio
files, video files, pictures, graphics, etc. Content manage-
ment systems typically control access to content in a reposi-
tory. A user may generate content, and when the content is
checked into the repository, the content may be subsequently
processed by the CMS according to predefined rules. A user
may also check out content from the repository, or link to
content in the repository while generating content.

A content management system typically manages docu-
ments (also referred to as objects) in a specified format, such
as eXtensible Markup Language (XML). An XML docu-
ment may be used to describe virtually any type of data. For
example, XML grammars have been used to describe word
processing documents, spreadsheets, database records, digi-
tal images and digital video, to name but a few. Further,
specialized grammars are frequently specified by a domain
specific XML schema (e.g., the eCTD specification promul-
gated by the International Conference on Harmonization of
Technical Requirements (ICH)). A given XML document
may also be associated with additional artifacts such as a
document type definition (DTD), XSL style sheets, and other
associated files, tools and utilities. XML data may be of
different types, such as structured data, unstructured data,
assembled data, and wizard data. Structured data is very
structured, similar to relational data, and there is no unstruc-
tured data mixed in within the well-defined structure.
Unstructured data is like traditional rich word processing
formats, such as Microsoft Word. Microsoft and Word are
registered trademarks of Microsoft Corporation. Assembled
data represents a structure of links to external content.
Wizard data is a special form of tabular data that uses a
wizard to prompt the user to provide the data that is inserted
into a table or other data structure. A given document may
contain a mix of different types of data. Known applications
such as applications for rendering different types of data are
efficient and able to render certain types of data well, but not
others. For example, an application such as Microsoft Word
may be efficient in rendering unstructured data, but poor at
rendering structured data. When a user decides to invoke a
particular application to view a document that contains
multiple types of data, the application may do a good job
with respect to some types of data while doing a poor job
with respect to other types of data in the same document. It
is often difficult for a user to know which application to use
when viewing a document with multiple types of data.
Without a way for a content management system to render
an object with different data types in a more efficient way, a
user will have to manually switch applications when work-
ing with different types of data in an object.

BRIEF SUMMARY

A content management system (CMS) includes a render-
ing mechanism that receives a desired rendering action for
a selected object in the repository, determines from defined

10

20

25

30

40

45

55

2

rendering rules which elements in the selected object cor-
respond to the desired rendering action, determines which of
a plurality of applications corresponds to the desired ren-
dering action, and renders one or more clements in the
selected object that correspond to the desired rendering
action in the application corresponding to the desired ren-
dering action. The rendering mechanism may insert render-
ing markers in an object that define a type of data for each
element in the object. The rendering mechanism may then
determine from the desired rendering action and from the
rendering markers in the object which elements in the
selected object should be rendered, and which application
should be used to render the elements. In addition, nested
elements may be rendered by invoking multiple applications
that are active at the same time to simultaneously render
different types of data.

The foregoing and other features and advantages will be
apparent from the following more particular description, as
illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

The disclosure will be described in conjunction with the
appended drawings, where like designations denote like
elements, and:

FIG. 1 is a block diagram of a networked computer
system that includes a server computer system that has a
content management system that includes a rendering
mechanism that renders different elements using different
applications;

FIG. 2 is a block diagram of a prior art system for
rendering data with a structured data application;

FIG. 3 is a block diagram of a prior art system for
rendering data with an unstructured data application;

FIG. 4 is a block diagram of a prior art system for
rendering data with an assembled data application;

FIG. 5 is a block diagram of a prior art system for
rendering data with a wizard application;

FIG. 6 is a block diagram of a system for rendering data
of different types to different applications depending on the
type of data being rendered;

FIG. 7 is a block diagram of a table showing correlation
between rendering actions, type of data to be rendered, and
editors;

FIG. 8 is a flow diagram of a method for inserting
rendering markers in elements in an object;

FIG. 9 is a flow diagram of a method for rendering only
elements associated with a selected action to a correspond-
ing editor;

FIG. 10 is a flow diagram of a method for the content
management system to handle nested elements in an object;

FIG. 11 is a flow diagram of a method for a client to
handle nested elements in an object;

FIG. 12 shows the first portion of a sample XML docu-
ment;

FIG. 13 shows the remaining portion of the sample XML
document of FIG. 12;

FIG. 14 shows a sample set of rendering rules;

FIG. 15 shows a sample data mapping to specify a default
action for each data type;

FIG. 16 shows the first portion of the sample XML
document in FIG. 12 after rendering markers have been
placed in elements in the document;

FIG. 17 shows the remaining portion of the sample XML
document of FIG. 16 after rendering markers have been
placed in elements in the document;

US 9,448,971 B2

3

FIG. 18 shows one suitable example of a user interface
that allows a user to specify a desired rendering action;

FIG. 19 is a flow diagram of a method for automatically
generating one or more new rendering rules when a schema
is changed or added to the repository; and

FIG. 20 is a block diagram showing simultaneous display
from multiple editors in a graphical user interface.

DETAILED DESCRIPTION

The claims and disclosure herein provide a content man-
agement system (CMS) that renders different elements in an
object to different applications.

Many known content management systems use extensible
markup language (XML) due to its flexibility and power in
managing diverse and different types of content. One known
content management system that uses XML is Solution for
Compliance in a Regulated Environment (SCORE) devel-
oped by IBM Corporation. XML is growing in popularity,
and is quickly becoming the preferred format for authoring
and publishing. While the disclosure herein discusses XML
documents as one possible example of content that may be
managed by a content management system, the disclosure
and claims herein expressly extend to content management
systems that do not use XML.

Referring to FIG. 1, networked computer system 100
includes multiple clients, shown in FIG. 1 as clients
1104, . . ., 110N, coupled to a network 130. Each client
preferably includes a CPU, storage, and memory that con-
tains a document application and a content management
system (CMS) plugin. Thus, client 110A includes a CPU
112A, storage 114A, memory 120A, a document application
122A in the memory 120A that is executed by the CPU
112A, and a CMS plugin 124A that allows the document
application 122A to interact with content 152 in the reposi-
tory 150 that is managed by the CMS 170 in server 140. The
CMS plugin 124A includes a client rendering mechanism
126 A that allows the client to render different types of data
within an object via different applications. In similar fash-
ion, other clients have similar components shown in client
110A, through client 110N, which includes a CPU 112N,
storage 114N, memory 120N, a document application 122N,
a CMS plugin 124N, and a client rendering mechanism
126N.

The CMS 170 resides in the main memory 160 of a server
computer system 140 that also includes a CPU 142 and
storage 144 that includes a content repository 150 that holds
content 152 managed by the CMS 170. One example of a
suitable server computer system 140 is an IBM eServer
System i computer system. However, those skilled in the art
will appreciate that the disclosure herein applies equally to
any type of client or server computer systems, regardless of
whether each computer system is a complicated multi-user
computing apparatus, a single user workstation, or an
embedded control system.

CMS 170 includes a rendering mechanism 172, a render-
ing rule generation mechanism 174 and rules 180. Render-
ing mechanism 172 is used to render different elements in an
object to different applications. One way rendering mecha-
nism keeps track of elements in an object is to insert
rendering markers in the elements to define a rendering
action corresponding to the element. The rendering action
may then be correlated to a corresponding application. This
allows the rendering mechanism 172 to render elements in
an object via an application that can render the elements
effectively. Rules 180 include bursting rules 182, linking
rules 184, synchronization rules 186, and rendering rules

10

15

20

25

30

35

40

45

50

55

60

65

4

188. Of course, other rules, whether currently known or
developed in the future, could also be included in rules 180.
Rendering rule generation mechanism 174 is used to auto-
matically generate new rendering rules 188 when new
rendering rules need to be generated.

Bursting rules 182, linking rules 184, and synchronization
rules 186 are well-known in the art. Rendering rules 188 are
introduced herein, and contain information that tells the
rendering mechanism 172 how to render elements in an
object. For example, if an object contains elements of
structured data, the rendering rules may indicate which
application should be used to render that data.

In FIG. 1, repository 150 is shown separate from content
management system 170. In the alternative, repository 150
could be within the content management system 170.
Regardless of the location of the repository 150, the content
management system 170 controls access to and manages
content 152 in the repository 150.

Server computer system 140 may include other features of
computer systems that are not shown in FIG. 1 but are
well-known in the art. For example, server computer system
140 preferably includes a display interface, a network inter-
face, and a mass storage interface to an external direct access
storage device (DASD) 190. The display interface is used to
directly connect one or more displays to server computer
system 140. These displays, which may be non-intelligent
(i.e., dumb) terminals or fully programmable workstations,
are used to provide system administrators and users the
ability to communicate with server computer system 140.
Note, however, that while a display interface is provided to
support communication with one or more displays, server
computer system 140 does not necessarily require a display,
because all needed interaction with users and other pro-
cesses may occur via the network interface.

The network interface is used to connect the server
computer system 140 to multiple other computer systems
(e.g., 110A, . .., 110N) via a network, such as network 130.
The network interface and network 130 broadly represent
any suitable way to interconnect electronic devices, regard-
less of whether the network 130 comprises present-day
analog and/or digital techniques or via some networking
mechanism of the future. In addition, many different net-
work protocols can be used to implement a network. These
protocols are specialized computer programs that allow
computers to communicate across a network. TCP/IP
(Transmission Control Protocol/Internet Protocol) is an
example of a suitable network protocol.

The mass storage interface is used to connect mass
storage devices, such as a direct access storage device 190,
to server computer system 140. One specific type of direct
access storage device 190 is a readable and writable CD-RW
drive, which may store data to and read data from a CD-RW
195.

Main memory 160 preferably contains data and an oper-
ating system that are not shown in FIG. 1. A suitable
operating system is a multitasking operating system known
in the industry as 15/0S; however, those skilled in the art will
appreciate that the spirit and scope of this disclosure is not
limited to any one operating system. In addition, server
computer system 140 utilizes well known virtual addressing
mechanisms that allow the programs of server computer
system 140 to behave as if they only have access to a large,
single storage entity instead of access to multiple, smaller
storage entities such as main memory 160, storage 144 and
DASD device 190. Therefore, while data, the operating
system, and content management system 170 may reside in
main memory 160, those skilled in the art will recognize that

US 9,448,971 B2

5

these items are not necessarily all completely contained in
main memory 160 at the same time. It should also be noted
that the term “memory” is used herein generically to refer to
the entire virtual memory of server computer system 140,
and may include the virtual memory of other computer
systems coupled to computer system 140.

CPU 142 may be constructed from one or more micro-
processors and/or integrated circuits. CPU 142 executes
program instructions stored in main memory 160. Main
memory 160 stores programs and data that CPU 142 may
access. When computer system 140 starts up, CPU 142
initially executes the program instructions that make up the
operating system.

Although server computer system 140 is shown to contain
only a single CPU, those skilled in the art will appreciate that
a content management system 170 may be practiced using a
computer system that has multiple CPUs. In addition, the
interfaces that are included in server computer system 140
(e.g., display interface, network interface, and DASD inter-
face) preferably each include separate, fully programmed
microprocessors that are used to off-load compute-intensive
processing from CPU 142. However, those skilled in the art
will appreciate that these functions may be performed using
1/O adapters as well.

At this point, it is important to note that while the
description above is in the context of a fully functional
computer system, those skilled in the art will appreciate that
the content management system 170 may be distributed as
an article of manufacture in a variety of forms, and the
claims extend to all suitable types of computer-readable
media used to actually carry out the distribution, including
recordable media such as floppy disks and CD-RW (e.g., 195
of FIG. 1).

The rendering mechanism and the rendering rule genera-
tion mechanism may also be delivered as part of a service
engagement with a client corporation, nonprofit organiza-
tion, government entity, internal organizational structure, or
the like. This may include configuring a computer system to
perform some or all of the methods described herein, and
deploying software, hardware, and web services that imple-
ment some or all of the methods described herein. This may
also include analyzing the client’s operations, creating rec-
ommendations responsive to the analysis, building systems
that implement portions of the recommendations, integrating
the systems into existing processes and infrastructure,
metering use of the systems, allocating expenses to users of
the systems, and billing for use of the systems.

FIGS. 2-5 show block diagrams of how an object in a
content management system is rendered in the prior art. An
object 200 can have multiple elements in different forms
shown as structured data 210, unstructured data 220,
assembled data 230, and wizard data 240. FIG. 2 shows
object 200 being rendered using structured data application
250. Structured data application 250 is efficient at rendering
structured data. Notice that structured data 210, unstructured
data 220, assembled data 230, and wizard data 240 are all
rendered with structured data application 250. This can
cause undesired results as structured data application 250
may not be able to render unstructured data 220, assembled
data 230, and wizard data 240 in an acceptable manner.
FIGS. 3-5 show the same object 200 being rendered by
unstructured data application 350, assembled data applica-
tion 450, and wizard data application 550 respectively. In the
prior art, the user typically selects a single application to use,
and the object is then rendered to the user using this single
application. Because each application is optimized for ren-

10

15

20

25

30

35

40

45

50

55

60

65

6

dering a specific kind of content, rendering other kinds of
content in the same application may produce undesirable
results.

Referring to FIG. 6, the same object 200 may be pro-
cessed using a single rendering mechanism 610. Rendering
mechanism 172 and client rendering mechanism 126A, . . .,
126N are suitable examples for rendering mechanism 610.
Rendering mechanism 610 renders elements in object 200 to
the corresponding application. For example, structured data
210 is rendered using structured data application 250,
unstructured data 220 is rendered using unstructured data
application 350, assembled data 230 is rendered using
assembled data application 450, and wizard data 240 is
rendered using wizard data application 550. In a first imple-
mentation, a single application is selected based on the
desired rendering action. In a second implementation, mul-
tiple applications are invoked at the same time to render
different parts of an object to at the same time, such as a
nested object that include multiple types of data.

Rendering mechanism 610 could render the data in a
variety of ways. One suitable implementation is to have a
user choose which application to run, and then only the
elements of object 200 that correspond to the chosen appli-
cation would be rendered in the application. For example, if
the user chose to run structured data application 250, only
elements within structured data 210 would be rendered to
the structured data application 250. The presence of other
elements (i.e. unstructured data 220, assembled data 230,
and wizard data 240) could be denoted in the display of the
structured data application 250 with different symbols or
colors, but those elements may not be rendered in the
structured data application 250.

Another suitable implementation is to launch an applica-
tion for each element or type of data in object 200 and have
a graphical user interface combine them all together. For
example, let’s assume an object 200 contains ten elements in
the following order: two unstructured data, one structured
data, three assembled data, two wizard data, one unstruc-
tured data, and one structured data. When rendering mecha-
nism 610 renders this object, it may invoke three instances
of an unstructured data application, two instances of a
structured data application, three instances of an assembled
data application, and two instances of a wizard data appli-
cation. All of these applications could be active at the same
time, and the user interface could arrange the display from
the applications to represent the layout of object 200 which
would allow the user to get an overall picture of object 200
by rendering the individual elements using applications that
are best suited to elements of that type. FIG. 20 shows an
example of a graphical user interface that displays the output
of multiple applications to a user.

Referring to FIG. 7, a table 700 shows a correlation
between rendering actions, type of data in an object, and a
corresponding application used to render elements of that
type of data. For this simple example, we assume an action
StructuredEditAction corresponds to structured data, which
is rendered using a StructuredEditor as shown at 710. An
action UnstructuredEditAction corresponds to unstructured
data, which is rendered using an UnstructuredEditor as
shown at 720. An action AssembledEditAction corresponds
to assembly data, which is rendered using an AssemblyEdi-
tor as shown at 730. An action WizardEditAction corre-
sponds to wizard data, which is rendered using a Wizard-
Editor as shown at 740. Note the labels in FIG. 7 are
descriptive, but allow an understanding of how specifics
could be implemented. For example, entry 710 could include
a rendering action of Edit eCTD Properties as the rendering

US 9,448,971 B2

7

action, structured as the type of data, and an editor of eCTD
Editor. Note eCTD stands for Electronic Common Technical
Document, which is an example of a specialized grammar
for structured data. Entry 720 could include Edit() as the
rendering action, unstructured as the type of data, and
Microsoft Word as the editor. One of ordinary skill in the art
will recognize the entries in table 700 in FIG. 7 could be
replaced with any suitable rendering action, type of data, and
corresponding application. Referring to FIG. 8, a method
800 scans an object and inserts rendering markers in ele-
ments in the object that correspond to defined rendering
rules. Method 800 begins with defining rendering rules (step
810), such as when a system administrator manually defines
one or more rendering rules. An object is then checked out
of the repository (step 820), and the object is scanned and
each element is evaluated against the rendering rules (step
830). If the eclement matches a rendering rule (step
840=YES), a rendering marker is inserted in the correspond-
ing element (step 850). If there are more elements left to
scan (step 860=YES) method 800 goes to step 840. If the
element does not match a rendering rule (step 840=NO) then
method 800 goes to step 860. If there are no more elements
that need to be scanned (step 860=NO) the object is recon-
stituted (step 870) and the object is rendered to view or edit
(step 880).

Referring to FIG. 9, a method 900 for rendering only
elements associated with a specified action begins with
selecting a desired action against an object that has been
processed to determine how to render elements in the object
(step 910). If there are more elements to evaluate (step
920=YES), an element is selected (step 930). If the element
is associated with the selected action (step 940=YES) the
element is marked as being associated with the selected
action (step 950) and method 900 returns to step 920. If the
element is not associated with the selected action (step
940=NO) method 900 returns to step 920. If there are no
more elements left to evaluate (step 920=NO), an applica-
tion corresponding to the selected action is identified (step
960), and only the elements marked as being associated with
the selected action are rendered to the identified application
(step 970). Method 900 discloses invoking a single appli-
cation, and rendering to the single application only those
elements that correspond to the type of data the single
application is optimized for. Note, however, that the disclo-
sure and claims herein expressly extend to rendering mul-
tiple types of data to multiple applications that are active at
the same time, as shown in FIG. 20.

Nested elements in an object may be handled by either
calling the CMS, or by allowing a client rendering mecha-
nism (e.g., 126A in FIG. 1) to handle the nested elements
without calling the CMS. Referring to FIG. 10, a method
1000 for the content management system to handle nested
elements in an object begins with checking an object out of
the repository (step 1010). The object is scanned and one or
more rendering markers are inserted according to rendering
rules (step 1020). The elements marked in step 1020 may
include nested elements. The object is then reconstituted and
sent to the client to view or edit (step 1030). If there are any
nested elements (step 1040=YES), each nested element is
sent to the CMS to determine which application to use to
render each nested element (step 1050). In response, the
CMS identifies which application to use for each nested
element (step 1060). The client then renders each nested
element using each identified application (step 1070) and
method 1000 is done. If there are no nested elements (step
1040=NO) then method 1000 is done.

10

15

20

25

30

35

40

45

50

55

60

65

8

Referring to FIG. 11, a method 1100 allows a client to
handle nested elements in an object without calling the
CMS, and begins with checking an object out of the reposi-
tory (step 1110). The object is scanned and one or more
rendering markers are inserted according to rendering rules
(step 1120). The elements marked in step 1120 may include
nested elements. The object is then reconstituted and sent to
the client to view or edit (step 1130). If there are any nested
elements (step 1140=YES) the client rendering mechanism
identifies which application to use to render each nested
element (step 1150). One suitable way for the client to
identify which application to use is for the client to receive
a copy of the rendering rules (188 in FIG. 1) from the CMS.
The client then renders each nested element using each
identified application (step 1160) and method 1100 is done.
If there are no nested elements (step 1140=NO) then method
1100 is done.

A simple example is now given to illustrate the methods
herein. A user starts with a sample XML document based on
a drug labeling grammar as shown in FIGS. 12-13. The
sample XML document shown in FIGS. 12-13 contains
structured data 1210, 1220 and 1230 in FIGS. 12 and 1310
and 1320 in FIG. 13. We assume for this example all other
parts of the object represent unstructured data. A sample set
of rendering rules 1400 is shown in FIG. 14. Multiple rules
can be grouped under a RuleGroup element as seen in
rendering rules 1400, allowing a list of rules to share the
same set of conditions. One or more conditions may be
specified for a rule group to determine when the rules should
be enforced. For example, rule group 1410 will only be
enforced when the user is in the “regulatory_contributor”
role. Rule 1420 matches <section™> elements that contain at
least one <text> element. A rule also specifies the type of
data that the matching element represents (i.e. structure,
unstructured, or assembled). A rule element further allows
one or more <Action> elements to be defined as well as
conditions to determine when to use a specific action or the
default action for the specified data type. An action element
references the name of an action that is defined in the CMS
configuration. In the example herein, rule 1420 indicates that
the UnstructuredEditAction should always be used when the
rule is matched. For the other rules in rule group 1410,
namely rules 1430, no specific actions are defined. In these
cases the default action corresponding with the specified
data type will be used. Also, when the rendering mechanism
applies the rendering rules 1400, the rendering markers for
rules 1430 will be nested under the rendering marker for rule
1420. The <Default> element 1440 in this example depicts
a default case. The <Default> element 1440 allows a system
administrator to indicate what the default data type should
be for the object. In other words, when none of the rendering
rules 1400 apply to the object, the default type should be
used.

A sample data mapping 1500 is shown in FIG. 15. Data
mapping configuration 1500 depicts default associations
between different types of data and rendering actions. The
configuration is used by the CMS to determine which
actions to render a particular type of data when no actions
are explicitly specified by a rendering rule. Note that ren-
dering rules 1400 and data mapping 1500 are preferably part
of the rendering rules 188 shown in FIG. 1.

FIGS. 16-17 show how the document shown in FIGS.
12-13 is changed after the CMS scans the document and
applies rendering rules 1400. A rendering marker is added to
the beginning of the object to indicate what the default
rendering actions are. In the current example, rendering
marker 1610 corresponds to the <Default> rule from ren-

US 9,448,971 B2

9

dering rules 1400. By inserting rendering marker 1610 at the
top of the object, the rending mechanism knows that any
element in the object that does not have an explicit rendering
action associated with it should use the default definition in
rendering marker 1610. Rendering marker 1710 in FIG. 17
is defined within the <section> element, and is associated
with the UnstructuredEditAction as defined by rendering
rules 1400. Rendering markers 1720, 1730, and 1740 indi-
cate to use the StructuredEditAction rendering action. Ren-
dering markers 1720, 1730, and 1740 are nested below the
UnstructuredEditAction rendering marker, and therefore
will not be rendered to the user initially, but will be rendered
after the user has started editing the <section> element in the
unstructured data application. The user will see an option in
the unstructured data application for invoking the structured
data application to view the subsequent structured sections.
In this manner, multiple applications may be active at the
same time rendering different elements or nested elements to
the user.

A user interface may be included that allows a user to
select a desired rendering action. FIG. 18 shows one pos-
sible user interface the user might see if the user selected the
example XML document shown in FIGS. 12-13 with ren-
dering rules 1400 applied. If the user chooses the “Properties
with structured data editor” action under the Edit menu, then
the rendering mechanism will call the action, which in this
example launches a structured data editor. All of the XML
elements that have rendering markers corresponding to
structured data are passed to the structured data editor. Since
structured data editor is the default association, all elements
from the sample document that do not contain a specific
rendering marker and all those that contain a rendering
marker corresponding to the structured data editor will be
rendered. If the user chooses the “Label Content with
unstructured data editor” action under the Edit menu, as
shown in FIG. 18, then the rendering mechanism launches
an unstructured data editor. All of the XML elements from
the sample document that have rendering markers corre-
sponding to unstructured data are passed to the unstructured
data editor.

Referring to FIG. 19, a method 1900 shows how render-
ing rule generation mechanism 174 in FIG. 1 autonomically
generates new rendering rules when a schema is changed or
added. Method 1900 begins with a schema being changed or
added to the repository (step 1910). The changed or added
schema elements are added (step 1920). A new rendering
rule may then be generated automatically (step 1930). If the
system administrator is to be notified (step 1940=YES),
notification is sent to the administrator (step 1950). If no
notification is needed (step 1940=NO), method 1900 is
done. By autonomically generating a new rendering rule
based on a new or changed schema, the content management
system 170 makes dynamic modifications to its rendering
rules 188 that allow the system to function without requiring
a system administrator to explicitly define a new rendering
rule for new or changed schemas.

Method 1900 may be implemented in any suitable way.
For example, rendering rules could be periodically analyzed
by the content management system, and patterns corre-
sponding to the rendering rules could be stored in a database.
A new rendering rule could then be generated based on the
stored patterns in the database. In addition, any suitable
enhancement could be added to the autonomic generation of
rendering rules. For example, a rule generation control could
be specified to turn autonomic generation of rendering rules
on and off, and a rule generation threshold could be defined
that allows autonomic generation of rules in some circum-

20

25

35

40

45

50

55

60

65

10

stances while prohibiting autonomic generation of rules in
other circumstances. These and other enhancements are
within the scope of the disclosure and claims herein.

Because the rendering mechanism disclosed and claimed
herein can route elements to appropriate applications, the
rendering mechanism can invoke multiple applications at the
same time and display their outputs in a convenient manner.
An example of this is shown in FIG. 20. We assume display
panel 2000 is defined by a graphical user interface, and
within display panel 2000 are multiple windows 2010, 2020,
2030, 2040 and 2050. In this specific example, window 2010
displays structured data that is output from a corresponding
application for structured data. Window 2020 displays
unstructured data that is output from a corresponding appli-
cation for unstructured data. Window 2030 displays struc-
tured data that is output from a corresponding application for
structured data. Note the application for structured data
display 2030 could be the same application as for structured
data display 2010, or could be a different instance as the
same application. Window 2040 displays assembly data that
is output from a corresponding application for assembly
data. Window 2050 displays structured data that is output
from a corresponding application for structured data. Again,
the application for the structured data display 2050 could be
the same application as for structured data displays 2010 and
2030, or could be a different instance of one of these
applications. Display 2000 illustrates how multiple applica-
tions that are active at the same time may render their
outputs to a user in a way that allows the user to view all the
content in an object using applications that are optimized for
the various different types of content.

While some of the examples discussed herein relate to
users and the rendering of objects and elements to a user in
various applications, the disclosure and claims herein
expressly extend to rendering objects and elements to soft-
ware processes as well. Thus, the rendering of objects and
elements discussed herein expressly extends to rendering the
objects and elements to any suitable consumer of the objects
and elements, including without limitation human users and
software processes.

One skilled in the art will appreciate that many variations
are possible within the scope of the claims. Thus, while the
disclosure is particularly shown and described above, it will
be understood by those skilled in the art that these and other
changes in form and details may be made therein without
departing from the spirit and scope of the claims. For
example, while the examples in the figures and discussed
above related to XML documents, the disclosure and claims
herein expressly extend to content management systems that
handle any suitable type of content, whether currently
known or developed in the future. In addition, while the
disclosure and claims herein disclose inserting rendering
markers inside of elements in an object, an equivalent
implementation could place markers surrounding elements
in an object. This and other equivalent implementations are
within the scope of the disclosure and claims herein.

What is claimed is:

1. An apparatus comprising:

at least one processor;

a memory coupled to the at least one processor;

a repository residing in the memory that includes a
plurality of objects;

a plurality of rendering rules residing in the memory that
determine how elements in the plurality of objects are
rendered;

US 9,448,971 B2

11

a content management system residing in the memory and
executed by the at least one processor, the content
management system comprising:

a rendering mechanism that inserts a plurality of ren-
dering markers in a plurality of elements in a
selected object in the repository that identify a cor-
responding rendering action for each marked ele-
ment, receives a desired rendering action for the
selected object in the repository, determines from the
rendering rules and the plurality of rendering mark-
ers which of the plurality of elements in the selected
object correspond to the desired rendering action,
determines which one of a plurality of applications
corresponds to the desired rendering action, and
renders at least one element in the selected object
that corresponds to the desired rendering action in
the one application corresponding to the desired
rendering action, wherein the rendering mechanism
invokes a plurality of applications that are active at
the same time to render multiple elements in the
selected object that correspond to different rendering
actions according to the plurality of rendering mark-
ers in the selected object.

2. The apparatus of claim 1 further comprising a rendering
rule generation mechanism that generates the plurality of
rendering rules by analyzing a schema for the selected
object.

3. The apparatus of claim 1 wherein if there are nested
elements in the selected object, the rendering mechanism
determines from the plurality of rendering rules how to
render each nested element.

4. The apparatus of claim 1 wherein if there are nested
elements in the selected object, a client rendering mecha-
nism determines from the plurality of rendering rules how to
render each nested element in a client computer system
coupled to the apparatus.

5. A computer-implemented method for processing
objects in a repository in a content management system, the
method comprising the steps of:

inserting a plurality of rendering markers in a plurality of
elements in a selected object in the repository, the
plurality of rendering markers identifying a corre-
sponding rendering action for each marked element in
the selected object;

receiving a desired rendering action for the selected object
in the repository;

determining from a plurality of rendering rules and from
the plurality of rendering markers which of the plurality
of elements in the selected object correspond to the
desired rendering action;

determining which one of a plurality of applications
corresponds to the desired rendering action;

determining from the rendering markers in the selected
object how each element in the selected object is
rendered; and

10

15

20

25

30

35

40

45

50

12

rendering multiple elements in the selected object by
invoking a plurality of applications that are active at the
same time to render the multiple elements in the
selected object that correspond to different rendering
actions according to the plurality of rendering markers
in the selected object.

6. The method of claim 5 further comprising the step of
automatically generating the plurality of rendering rules by
analyzing a schema for the selected object.

7. The method of claim 5 further comprising the step of:

if there are nested elements, determining from the plural-
ity of rendering rules how to render each nested ele-
ment.

8. The method of claim 7 wherein the step of determining
from the plurality of rendering rules how to render each
nested element is performed by a rendering mechanism in
the content management system.

9. The method of claim 7 wherein the step of determining
from the plurality of rendering rules how to render each
nested element is performed by a client rendering mecha-
nism on a client computer system.

10. A computer-implemented method for processing
objects in a content management system, the method com-
prising the steps of:

(A) defining a plurality of rendering rules that determine
how a plurality of elements in a selected object are
rendered to a user in a plurality of applications;

(B) scanning each of the plurality of elements in the
selected object, and if a selected element matches one
of the plurality of rendering rules, inserting a rendering
marker in the selected element in the selected object;

(C) inserting a rendering marker in each nested element in
the selected object according to the plurality of render-
ing rules;

(D) receiving a rendering action from a user for the
selected object;

(E) determining a plurality of applications that each
correspond to a different rendering action for the
selected object;

(F) determining from the rendering markers in the
selected object how each element in the selected object
is rendered to the user;

(G) invoking multiple applications so they are active at
the same time to render a nested element in the selected
object that includes markers corresponding to the mul-
tiple applications;

(H) determining when a schema in the content manage-
ment system changes;

(D automatically generating a new rendering rule corre-
sponding to the changed schema;

(I) determining when a schema is added to the content
management system; and

(K) automatically generating a plurality of new rendering
rules corresponding to the new schema.

#* #* #* #* #*

